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Development and Evaluation of an Expert
System for Diagnosing Pest Damage of Red
Pine in Wisconsin
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ABsTRACT. An expert system for diagnosing pest damage of red pine stands in Wis-
consin, PREDICT, runs on IBM or compatible microcomputers and is designed to be
useful for field foresters with no advanced training in forest pathology or entomology.
PREDICT recognizes 28 damaging agents including species of mammals, insects, and
pathogens, as well as two types of abiotic damage.

Two separate development tools (EXSY S and INSIGHT2 +) were used. Each em-
ploys a rule-based method for representing knowledge, which was obtained from the
literature and from human experts in the fields of forest pathology and entomology. The
pest-inference rule blocks, for each damaging agent, are based on the abduction model
of diagnosis and include rules for eliminating a pest from further consideration, diag-
nosing a pest as certain, and compiling evidence in favor of a pest. Both development
tools employ a backward-chaining control strategy; however, it was necessary to modify
this approach by designing a special block of rules to approximate the mixed strategy
used by the human experts. A logic and completeness rule block was also constructed to
deduce facts omitted by the user and to minimize the need for questioning.

Input to PREDICT is obtained from pest damage reports containing specific informa-
tion about stand/site conditions, tree symptoms, and signs. Diagnoses from PREDICT
take the form of alist of one or more possible agents with corresponding confidence
values. Actual and hypothetical test cases were used to refine the knowledge base, then
a separate set of 20 actua cases was used as a basis for testing and evaluating the
completed system. It was necessary to develop specia procedures for refining and eval-
uating the system to accommodate the often vague and uncertain nature of pest damage
information.

Two versions of PREDICT (developed with the EXSY S and INSIGHT2 + tools, re-
spectively) were evaluated and compared with three recognized experts and two field
foresters. No significant differences were found between the performances of PREDICT
and the experts; however, PREDICT performed significantly better than the two for-
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esters, even though they both have training and experience in forest pest diagnosis. It
was concluded that PREDICT is able to improve the diagnoses of field foresters to a
level comparable with recognized experts. For Sci. 35(2):364-387.

ADpDITIONAL KEY worbps. Artificial intelligence, personal computers, forest pathology,
forest entomology, pest management.

FORESTRY APPLICATIONS OF EXPERT SYSTEMS are dtill relatively new, and
little information has been compiled on methods for developing and evalu-
ating expert systems in forestry, or on their effectiveness as tools for solving
forestry problems. This paper addresses the need for such information, and
describes the design, construction, evaluation, and test results of an expert
system for diagnosing insect, disease, and other types of damage in red pine
(Pinus resinosa Ait.) stands in Wisconsin.

Expert systems are computer programs capable of solving difficult
problems at alevel comparable to human experts. Their expertise is usually
restricted to a very specific problem area, e.g., apple orchard management
problems (Roach et al. 1985), or diagnosis and treatment recommendations
for bacterial infections (Davis et al. 1977). Expert systems have been ap-
plied to problems in many fields, including electronics, engineering, law,
manufacturing, mathematics, medicine, meterorology, physics, and space
science (Hayes-Roth 1984). Forestry applications have also been reported
(Rauscher and Cooney 1986, Schmoldt and Martin 1986, Kourtz 1987,
Rauscher 1987, Reinhardt 1987, and White and Morse 1987), and potential
applications in wood products manufacturing are described by Mendoza and
Gertner (1988).

Expert systems evolved from techniques developed in the field of artifi-
cia intelligence, a branch of computer science. A variety of names have
been used to identify expert systems, e.g., knowledge-based systems, infer-
ence systems, rule-based systems, and consultation systems. The particular
name used is influenced by the preference of the devel oper and/or the struc-
ture of the knowledge in the system. General references on the structure
and functioning of expert systems are provided by Hayes-Roth et a. (1983),
Nau (1983), and Waterman (1986), to name a few. Discussions about the
expert system approach and its problems and potentials for forestry applica-
tions are given by Schmoldt and Martin (1986), Mills (1987), and Schmol dt
(19874, 1987c).

The authors were motivated to explore the use of expert systems for pest
diagnosis in forestry because of the success reported by Davis et a. (1977)
with similar applications of expert systems for medical diagnosis. It was
determined that the time and effort required to develop an expert system
would necessarily y restrict this project to pest problems of a single species.
Red pine was selected because of its economic importance in Wisconsin.
Also, the number of different pests threatening the health of red pine stands
is greater than that of any other commercial speciesin Wisconsin (Lindberg
and Hovind 1983).

The objectives of this project were threefold. First, it was desired to de-
velop an expert system for pest diagnosis of red pine that would be useful
for field foresters with little formal training in forest pathology or ento-
mology. Required observations of tree and stand conditions, signs, and
symptoms should be easily obtained by the average field forester.

The second objective was to determine if the expert system can perform
on a par with recognized experts, i.e., forest pathologists and entomologists
with extensive experience diagnosing pest problems of red pine. And, fi-
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nally, it was desired to determine if the expert system can significantly im-
prove the diagnoses of field foresters (nonexperts).

DESIGN AND CONSTRUCTION OF THE EXPERT SYSTEM

Expert systems consist of a knowledge base containing the knowledge and
experience required for the particular area of expertise. They also consist of
programs to create and modify the knowledge base and to apply the knowl-
edge to specific problems. In addition to the time and effort required to
develop the knowledge base, earlier expert systems also required a substan-
tial programming effort to develop the necessary algorithms and user inter-
faces. Since then, a number of expert system development tools (called
“shells’) have appeared on the market (Cooney 1986). These shells incor-
porate all the necessary programs in a ready-to-run software package.

The authors elected to make use of a shell so that this project’s develop-
ment effort could focus on design and construction of the knowledge base.
In fact, two separate shell systems were used, EXSYSand INSIGHT2+.2
The authors decided to implement the pest diagnosis system under two dif-
ferent shells to see if the performance of the final system would be in-
fluenced in any way by the particular shell used. These two shells were
selected because they seemed to be sufficiently powerful for the application,
they are inexpensive (less than $500 at the time of the study), and there are
some differences in their knowledge representation and control strategies.

The pest diagnosis system PREDICT (Pinus resinosa Expert Diagnostic
Consultation Tool), was developed on an IBM XT personal computer using
each of the two shells. Hence, there are currently two versions of PRE-
DICT: PREDICT/EXSYS and PREDICT/INSIGHT2+.*The final systems
operate on most IBM and compatible computers.

Both EXSYS and INSIGHT2+ use a rule-based method of knowledge
representation, i.e., knowledge is represented in the form of IF-THEN
rules, and decisions are made by drawing inferences from these rules and
the characteristics of a specific problem. However, differences exist in the
structure of the rules and the manner in which facts are represented. Brief
descriptions of EXSY S and INSIGHT2+ follow.

EXSYS (VERsiON 3.1)

EXSYS runs on an IBM PC/XT/AT or compatible computer with at least
256K of memory and one double-sided disk drive. However, al the rules
and any external programs must be co-resident in memory, so more than
256K of memory maybe required (PREDICT/EXSY S requires 340K). Also,
much better performance is obtained when two disk drives or a hard disk
are available.

The EXSY S development package contains several programs for creating

'EXSYSis a product of Exsys, Inc., P.O. Box 75158, Albuquerque, NM 87194.

’INSIGHT2+ is a product of Level Five Research, Inc., 503 Fifth Ave., Indiaantic, FL
32903. Level Five Research has recently been purchased by Information Builders, Inc., and
INSIGHT2+ has been replaced by LEVEL FIVE Version 1, a higher performance product
that was previously only available on VAX computers.

*Copies of PREDICT are available for distribution to interested parties. For prices and or-
dering information write to George L. Martin, Dept. of Forestry, University of Wisconsin-Mad-
ison, Madison, WI 53706.
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and running a knowledge base. These programs include a rule editor and a
run-time inference engine. The rule editor is used in the development pro-
cess to create and modify decision rules in the knowledge base. Each deci-
sion rule contains up to five parts. IF and THEN parts, and optional ELSE,
REFERENCE, and NOTE parts.

The IF part (also called the “antecedent”) is a set of statements con-
cerning facts about a particular problem. Facts are either deduced by the
expert system or provided by the user and are represented in EXSYS as
numbers, text, or qualifiers. A qualifier is a description of some object or
condition that may have several different values at the same time. For ex-
ample, a qualifier might be “the affected trees are” and its possible values
might be

present in patches or groups,
scattered,

widespread,

dead or dying,

leaning or loose in the ground,
deformed.

For a particular pest diagnosis problem, “the affected trees are” may simul-
taneously have the values “present in patches or groups’ and “dead or
dying,” or some other combination of values. It is assumed in EXSY S that
all facts are known with certainty. There is no provision for uncertain infor-
mation about a problem.

If al of the IF statements (antecedent conditions) are found to be true, the
actions listed in the THEN part (also called the “consequent”) of the rule
are performed, otherwise the actions listed in the ELSE part, if any, are
performed. Possible actions include assigning values to numeric, text, or
qualifier variables, or calling an external program. Another type of actionis
the assignment of a probability or confidence value to one of the possible
conclusions the expert system is trying to reach. In the PREDICT knowl-
edge base, possible conclusions correspond to the damaging agents (Table
1). The probability or confidence value is not really a probability yin the strict
sense of the word, but is a number (0-1) indicating the confidence that the
conclusion is correct.

More than one rule may assign probabilities to the same conclusion, so it
is necessary to select an appropriate formula for combining probabilities
from different rules. From the several alternatives offered by EXSYS, the
authors selected an incremental formulafor independent probabilities as the
most appropriate for the PREDICT knowledge base. With this formula,
each time a new rule assigns a probability y, P, to a conclusion, the new prob-
ability, P,, is calculated as

PN: I:)o-'- P(l - Po) (1)

where P, is the old probability y assigned to the conclusion by previous rules.
In this way, the probability score for a particular conclusion increases incre-
mentally and approaches a value of 1 as evidence accumulates for that con-
clusion. The reader should note that this method of combining probabilities
is not affected by the order in which probabilities are assigned by different
rules. Shortliffe and Buchanan (1975) refer to these probabilities as mea-
sures of belief, and they accumulate their belief values using mathematics
identical to Equation (1).
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Some optional information may be appended to each rule in the form of a
NOTE and REFERENCE. A NOTE provides information about the rule,
its facts, and reasoning. The NOTE is displayed anytime the rule is dis-
played. A REFERENCE contains information about the sources of facts
and reasoning in the rule. The REFERENCE is displayed only if the user
specifically requests it.

The run-time inference engine, an EXSY'S program that allows the knowl-
edge base to be applied to specific problems, uses a control strategy known
as “backward chaining.” Under this strategy, each of the possible conclu-
sions, in turn, is set as agoal, and al of the rules that infer this conclusion
are evaluated in the order in which they appear in the knowledge base. If a
rule cannot be evaluated because certain facts are unknown, the rule istem-
porarily suspended, and the program examines rules that might be able to
deduce the unknown facts. If the program fails to deduce the necessary
information, the user is asked to provide it. An example of backward
chaining is presented in Figure 1.

It isimportant to note that backward chaining is a goal-oriented strategy,
i.e., it selects rules that might be able to satisfy the current goal under in-
vestigation. Whether or not a selected rule actually succeeds (satisfies or
contributes to the current goal) is determined by its antecedent conditions,
consequent actions, and available facts.

The inference engine alows the user, at any time, to ask why some item
of information is requested. When this is done, EXSY S displays the rule(s)
currently being evaluated. The display provides some explanation of why

TABLE 1. Damaging agents recognized by the PREDICT expert system.

Mammals
Porcupines (Erithizon dorsatum L.)
Pocket gophers (Geomys bursarius [Shaw])
Meadow mice (Microtus spp.)
Insects
Red pine sawfly (Neodiprion nanulus nanulus Schedl)
European pine sawfly (Neodiprion sertifer [Geoff.])
Red-headed pine sawfly (Neodiprion lecontei [Fitch])
Pine tussock moth (Dasychira pinicola [Dyar])
Red pine needle midge (Thecodiplosis piniresinosae Kearby)
Saratoga spittlebug (Aphrophora saratogensis [Fitch])
Red pine shoot moth (Dioryctria resinosella Mut.)
European pine shoot moth (Rhyacionia buoliana [D.&S.])
White pine weevil (Pissodes strobi [Peck])
Allegheny mound ants (Formica exsectoides Forel)
Northern pine weevil (Pissodes approximates Hopk.)
Pales weevil (Hylobius pales [Hbst.])
Red turpentine beetle (Dendroctonus valens Lee.)
Root collar weevil (Hylobius radicis Buch.)
Root tip weevil (Hylobius rhizophagus Millers, Benjamin, & Warner)
White grubs (Phyllophagus spp.)
Bark beetles (Ips pini [Say])
Pathogens
Scleroderris canker (Gremmeniella abietina [Lagerb.] Morelet)
Tip blight (Diplodia pinea [Desm.] Kickx)
Needle cast (Lophodermium pinastri [Schrad. ex Hook.] Chev.)
Red pine shoot blight (Srococcus strobilinus Preuss)
Armillariaroot rot (Armillaria mellea [Vahl ex Fr.])
Red pine needle rust (Coleosporium spp.)
Abiotic agents
Winter injury
Needle droop
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IF the entire seedling is discolored
AND the stand is located in a high frequency
county for pales weevil
AND NOT flagging is present on the branches
THEN there is evidence [.35] for pales weevil as
the causative agent

IF the size class of the stand is seedling
AND the type of needle injury is discoloration
AND the foliage affected is both old and new
AND the distribution of needle damage is

throughout the crown
THEN the entire seedling is discolored

IF height < 4.5 t (1.37 m)

THEN the size class of the stand is seedling
ELSE NOT the size class of the stand is seedling

;

ASK
USER

Ficure 1. Theinteraction between rules and user input is illustrated in this example of back-
ward chaining. Thefirst ruleistrying to establish evidence for pales weevil, but it has been
temporarily suspended because it is not known if the entire seedling is discolored. The
second rule in the chain is trying to deduce that the entire seedling is discolored, but it has
also been suspended because it is not known if the size class of the stand is seedling. The
third rule in the chain is invoked to determine if the size class is seedling or not, but it is
suspended because the height of the stand is not known. Finally, because there are no rules
to deduce the height of the stand, the user is asked to supply this information.

the requested information is needed. If several rules are listed, the informa-
tion that has just been requested will appear in the |F part of the first rule
displayed. One of the consequent actions of the first rule will provide facts
for the IF part of the second rule, and so on. A chain of rulesisdisplayed in
which each rule’s evaluation, except the first, is dependent on the evalua-
tion of the preceding rule in the chain. This display sequence reflects the
backward-chaining strategy described above.

After the list of possible conclusions has been exhausted and all infer-
ences have been made, the inference engine displays a list of all conclusions
that received a probability score greater than zero. The user can then re-
guest adisplay of all the rules used to infer a particular conclusion. Thisis
helpful for understanding how the conclusion was reached.
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INSIGHT2+ (VERSION 1.2)

Hardware and software requirements for INSIGHT2+ are similar to
EXSYS. AnIBM PC/XT/AT or compatible computer with at least 256K of
memory is required. However, to use the full capabilities of this develop-
ment package, 512K is recommended. Similar to EXSY S, any external pro-
grams that are called by a knowledge base must be co-resident in memory
with the inference engine, but the entire knowledge base need not be
memory resident. A minimum of two double-sided disk drives is required,
but a hard disk is recommended.

The INSIGHT2+ development package contains a text editor, a knowl-
edge base compiler, a run-time inference engine, and software to create and
access database files. The text editor is used to create and edit the knowl-
edge base using a special language called PRL (Production Rule Language).
Before the knowledge base can be used by the inference engine, it must be
compiled by the knowledge base compiler into an executable code. This
process is similar to the edit-compile-run cycle typical of many program-
ming languages.

All facts, hypotheses, final conclusions, and goals are treated identical y
by INSIGHT2+. They are al considered as statements which can be de-
scribed by one of the fact types. Any fact type may, optionaly, have an
associated confidence value in the range 0—100. Confidence values less than
50 (this default value may be reset by the system developer) are treated as
measures of belief in afact’s falsehood. Values greater than or equal to 50
are measures of belief in a fact’s truth. Four fact types are provided for
describing problems. Numeric and text facts are identical to their counter-
parts in EXSYS. Object facts are very similar to EXSYS qualifiers. The
fourth fact type, simplefact, is a simple statement that is either true, false, or
has some confidence value in between. An example of a simplefact is
“sandy soil is present in the stand. ”

Rules in INSIGHT2+ are similar to those in EXSYS, and include IF,
THEN, and ELSE parts. A backward-chaining control strategy similar to
that of EXSY Sis employed, and an incremental formula [Equation ()] was
selected for combining probabilities.

Extensive facilities are available for explaining to the user how a partic-
ular problem is being solved. At any time, the user can ask why some item
of information is requested. This provides access to the menus that produce
explanations. By default, the current rule and all rules dependent on it in the
current chain can be viewed. This is identical to the display produced by
asking “why” in EXSY S. Another menu allows the user to select from two
displays of the line of reasoning. One display shows, in chronological order,
all facts provided by the user and the inferred hypotheses. The other display
shows the facts and hypotheses required for the determination of each goal
pursued. A facts menu shows all facts in the current session, their values,
and the origin of their values. Any of the facts supplied by the user can be
changed any time during a session, and the problem can then be reevaluated
by the inference engine (EXSY S provides a similar feature, but it is only
available at the end of a session).

DAMAGING AGENTS

Damaging agents were selected for inclusion in the PREDICT expert system
on the basis of three criteria: (1) the agent is economical] y important in red
pine, (2) the agent is easily confused with economically important agents, or
(3) the symptoms of the agent are so overt that it appears economically
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important even though it is not. Table 1 lists the agents selected in each of
four categories: mammals, insects, pathogens, and abiotic agents.

Many mammals, including man, can severely damage red pine, causing
significant mortality in small trees and greatly reducing the growth of larger
ones (Wilson 1977). Of these, porcupines, pocket gophers, and meadow
mice have had the greatest impact. Injury results from gnawing and chewing
of the bark on the stem and major roots. The size and location of teeth
marks help discriminate between these three mammals. Unlike many of the
insects and diseases, visual identification of mammals provides little diffi-
culty for the casual observer.

Insects comprise the largest group of damaging agents of Wisconsin red
pine. Some insects injure red pine during both their adult and larval stages.
Therefore, diagnosis must occasionally consider several variants of the
same insect. Included in this category are defoliators, shoot and bud
feeders, bark feeders, and root feeders.

Diseases of red pine are often more difficult to diagnose than insect in-
jury. Symptoms are usually limited to changes in the appearance of the
needles. Because the pathogens are fungi, signs are often small fruiting
bodies that are difficult to distinguish outside of the laboratory. Knowledge
of the specific needles affected is very important. For example, some dis-
eases affect only the current year’'s needles, others only the previous year's
needles, and still others affect both. The location of the affected needles on
the tree is also important. Dark and moist conditions on lower portions of
the tree are important for development of some diseases.

Trees can exhibit injury from their surrounding environment as well as
from living organisms. Damaging environmental conditions may be present
in the air, the soil, or a combination of the two. Temperature extremes,
pollution, nutrient deficiencies, drought, and flooding are some of the con-
ditions that may be injurious. Two physiological responses to environmental
conditions are included in the abiotic category: winter injury and needle
droop. Both are related to transpiration loss in the needles.

CoNcepPTUAL MoDELS oF Pest DiIAGNOSIS

Although the transition from medical diagnosis to forest pest diagnosis is
not a great conceptual leap, there are aspects of the forestry application that
require special attention. In the medical setting, clinical data are usually
obtained by trained specialists, and the remaining information is provided
by reliable laboratory tests. In forestry, pest damage reports are usually
completed by field foresters who are not highly trained in pest diagnosis, so
important diagnostic information may be incomplete. Most often, only gross
symptoms are identified, and laboratory data are rarely available. Also, for-
esters usually observe the pest problem at a single point in time and are
unable to obtain a verbal history of the “patient’s” illness. Ambiguities in
forestry terminology further exacerbate the difficulty of obtaining reliable
reports (Schmoldt 1987b). Because of the uncertainty and incompleteness
associated with forest pest observations, thorough diagnoses often include
more than one possible cause of stand damage, rather than produce a single,
and possibly erroneous, conclusion.

To help provide the most consistent and complete data possible for use
with PREDICT, a Red Pine Damage Report form was prepared. This form is
a checklist of important diagnostic information ranging from general stand
information and gross symptoms to more specific symptoms and signs.

Bearing in mind the problems associated with forest pest diagnosis, two
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TABLE 2. Examples of different types of rules based on the abduction model of
pest diagnosis. Numbers in brackets indicate the confidence values of the rules.

Rule 1. Cause b Effect

IF root tip weevil is the damaging agent

THEN the trees have branch flagging
Rule 2. Evidence-Accumulation (Abduction)

IF the trees have branch flagging

THEN root tip weevil is the damaging agent [.3]
Rule 3; Elimination

IF the trees do not have branch flagging

THEN root tip weevil is not the damaging agent [1]
Rule 4: Certainty

IF small roots have been chewed off

THEN root tip weevil is the damaging agent [1]

conceptual models were used in the development of PREDICT. An abduc-
tion model was used to design and structure the decision rules, and a classi-
fication model was used for refinement of the knowledge base.

Abduction is the reverse of a cause-and-effect relationship. In the usual
cause-and-effect implication, some pest causes stand damage, and its ef-
fects are observed as symptoms (Rule 1 in Table 2). This is the way pest
information is presented in the literature and perceived by experts. In the
course of describing a particular pest, its manifested symptoms are also de-
scribed. However, in a diagnostic situation it is necessary to make infer-
ences in the other direction, i.e., given certain effects, a cause must be in-
ferred (Rule 2 in Table 2). This use of a cause-and-effect relationship in the
reverse direction is referred to as abduction (Reggia et al. 1985). After many
years of experience, human experts do thisimplicitly.

From elementary logic it is known that if a cause, p, implies an effect q (p
P q), it is not necessarily true that the effect, g, implies p, but this is the
type of inference that must be made in a diagnosis. It can be stated, how-
ever, that q provides evidence for p. Similarly, if r is another effect of p (p b
r), it can be said that r provides additional evidence for p. The measure of
evidence provided by the presence of an effect, g, and the implication p b
g, is the confidence value assigned to an inference rule relating pand g in
the knowledge base. This provides the basis for the evidence-accumulation
rules used in PREDICT (Rule 2 in Table 2). In general, the relationship p b
g will not be astrict implication, i.e., g may not always be an effect of p. To
accommodate this situation, it is necessary to reduce the confidence as-
signed to the decision rulerelating p and g.

In Rule 2 (Table 2), the confidence value is determined by the amount of
information conveyed by the presence of branch flagging, and also the
strength of the cause-effect implication (Rule 1). Because branch flagging
results from man y other agents, its information content is low and, despite
the fact that the cause-effect implication is strong (i.e., root tip weevil attack
always causes branch flagging), the overal result is a relatively small confi-
dence value.

If pb gisastrict implication, the logica contra-positive (NOT qP NOT
p) can be used to eliminate the cause, p, in the absence of its effect, g. This
provides the basis for the elimination rules used in PREDICT (Rule 3 in
Table 2). However, when using an elimination rule, a distinction must be
made between a condition not present and a condition not observed. The
observer must have given athorough search for the symptom and failed to
observe it before it can be stated that the symptom is not present. This
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stipulation reduces the possibility of erroneous elimination of an agent on
the basis of questionable observations.

Another important use of the abduction model occurswhen pb gand g
p, i.e., the implication is both ways (p g). This means that the effect, q,
occurs exclusively in the presence of p. Examples of this “if and only if”
implication include symptoms and signs that are specific to a particular pest.
In Rule 4 (Table 2), “small roots chewed off” carries a lot of information
because it occurs exclusively during root tip weevil attack. Relationships of
this type permit a definitive diagnosis and provide the basis for the certainty
rules used in PREDICT.

The classification model of pest diagnosis can be viewed as the assign-
ment of all possible observations of signs, symptoms, and stand conditions
to particular agents (pests). Hence, associated with each pest is a set of
possible damage reports that could arise from the occurrence of that pest
(Figure 2). Depending on its diagnostic strength, a particular report maybe
assigned to several pests, so there are varying degrees of overlap in the sets

A
Observation Space

NORTHERN
PINE WEEVIL

PALES
WEEVIL

ROOT TIP
WEEVIL

>

Ficure 2. According to the classification model of pest diagnosis, all damage reports that
might arise from the occurrence of a particular pest can be thought of as a circle or spherein
an “observation space” consisting of all possible signs, symptoms, and stand conditions.
Circles from different pests overlap to varying degrees, so many damage reports are asso-
ciated with more than one pest. Damage report A is highly diagnostic since it can arise from
only one pest. Damage report B could arise from either of two pests, so it isless diagnostic.
Damage report C has the least diagnostic value of the three reports, since it is associated with
four different pests.

JUNE 1989/ 373



belonging to each pest. In practice, it is not possible to enumerate al of the
sets; however, the concept of the classification model proved useful for re-
fining the PREDICT knowledge base (see “ Refinement” below).

Initial testing revealed groups of pests that were very similar in their ef-
fects, so initial refinement was aimed at discriminating between groups by
identifying distinct sets of observations common to each group. Later re-
finement involved discriminating within groups by identifying sets of obser-
vations unique to individual pests.

KNOWLEDGE AcQuISITION AND RULE CONSTRUCTION

Knowledge acquisition involves collecting and organizing the information
and expertise necessary for problem solving and encoding it in a set of infer-
ence rules. Both literature and human experts were consulted for knowledge
relevant to pest diagnosis of Wisconsin red pine.

Factors important to making a diagnosis were classified as stand/site con-
ditions, tree symptoms, and signs. Specific stand/site conditions may be
necessary for the occurrence of a particular pest, or they may predispose
the stand to population buildup and subsequent attack. Included in the
stand/site factors are stand location, soil and topographic descriptions, tree
diameter and height, stand characteristics (e.g., crown closure), and pres-
ence of certain other tree species. Symptoms describe the injury resulting
from the unknown agent. Different parts of the tree maybe affected, and the
effect on a particular part of the tree (e.g., shoots) may differ for each pest.
Signs are specific evidence that indicate the presence of a particular pest.
Signs, such as larvae or cocoons, are highly diagnostic.

Because the literature is very descriptive and exhaustive, it proved a good
source to begin enumerating the factors for each of the 28 pests. The above
three categories were used to structure these lists. Several experts were
then presented with the lists, and their comments were solicited. None of
the experts was familiar with every pest; but among them, coverage of the
pests was complete. The experts provided additional factors that were not
identified in the literature, indicated which factors were more important,
and eliminated some that were erroneous.

Stand location was identified by the experts as avery important factor for
determining which pests to consider and which to rule out for a particular
diagnosis. To best utilize this factor, data from an extensive search of pest
damage records in Wisconsin were obtained from Ronald L. Giese.'
Records spanning up to 30 years were obtained, and counties were desig-
nated, for most of the insects, as nonoccurrence (insect never observed),
presence (observed at least once), low frequency, and high frequency (ac-
cording to the frequency of observation). For some of the insects, the
mammals, and the pathogens, limited records allowed counties to be desig-
nated only as nonoccurrence and presence. To minimize the potential for
over-zealous elimination of a pest due to stand location, counties with no
record of occurrence, but adjacent to a presence county, were also desig-
nated as presence counties.

Prior to constructing the rules, it was important to formulate a strategy for
diagnosis, so severa experts were asked to describe the procedures they
employ. The y al use essential y the same strategy. Before arriving at a site,
the expert already has a good idea of the pests most likely responsible for
damage, because of familiarity with the pest problems common to a local

“Personal communication.
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area (stand location) and, possibly, advance information from the reporting
source. Location of the stand indicates which pests should be considered
first and effectively narrows the search. With these pests in mind, trees are
examined closely for symptoms. Observation of a particular symptom re-
sults in a focus on the pests related to this symptom, and a search is made
for other symptoms associated with these pests. However, observation of
certain other symptoms may change the focus of attention to different pests.
This approach is described in the artificial intelligence literature as a mixed
strategy (Klahr 1978), where intermediate conclusions are formed by for-
ward chaining, i.e., applying rules in the knowledge base whose IF part is
satisfied by known facts. These intermediate conclusions are then set as
goalsto be further investigated by backward chaining.

Neither EXSYS nor INSIGHT2+ employ a mixed strategy (both use
backward chaining with only a limited forward-chaining capability); how-
ever, it was possible to incorporate the main aspects of the human experts
strategy in PREDICT. The strategy is implemented in three consecutive

steps:

1. ldentify potential agents by bark, roots, root collar, or soil examination, and
pursue these agents in Step 2, else consider al agents.

2. Eliminate agents under consideration according to stand location, other stand/
site conditions, and the description of injury.

3. Compile evidence for agents under consideration and not previously eliminated.

The first step utilizes a few preliminary symptoms to focus on particular
pests for further investigation. All pests are considered if this fails. Focusing
on afew likely agents at the outset can greatly increase the efficiency of a
diagnosis. It was discovered that, using stand location alone, at most only
half of the pests could be eliminated. This meant that at least 14 pests
needed to be considered in every case. Preliminary testing indicated that
PREDICT could spend a large amount of time investigating unlikely pests
before the user was given an opportunity to provide highly diagnostic infor-
mation. Because diagnoses can be performed quite quickly in situations
where some careful observations have been made (e.g., examination of
bark, roots, root collar, or soil), a better strategy is to inquire about such
information at the beginning of a session. Only one question is needed to
determine if valuable information is available. The alternative may be a
lengthy, poorly directed consultation session.

Elimination similar to the human experts' approach occurs in Step 2. Step
3 attempts to accumul ate favoring evidence for pests not eliminated. Gener-
all y, these two steps occur sequentially for each pest. First, rules search for
disfavoring evidence for a particular pest. If the pest cannot be eliminated
on the basis of these rules, then favoring evidence is sought.

Construction of the initial knowledge base involved writing rules to infer

each of the pests. Diagnostic factors in each rule were combined according
to the four criteria described below.

The antecedent conditions in a rule must all occur within the same time
frame. An observer in a stand will only see current symptoms, not
symptoms that present themselves at different times or appear differently
over time. Rules must exist to address the possibility y that observations may
not be made at the time of injury and to consider different opportunities for
observation.

Diagnostic content should vary between rules for each pest. Due to the
incompleteness of information, strong diagnostic characters are not always
reported, but it is still desirable to infer an agent to a lesser extent.

Observational skill must be given consideration. Observers vary in their
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ability to distinguish symptoms. If rules contain only conditions that require
an experienced observer, they may never be applied when someone less
experienced uses the system. Some rules were written only with very basic
facts and others with symptoms and signs that require a trained eye for
observation. Often, observational skill isrelated to diagnostic content; con-
ditions that are more difficult to notice tend to provide stronger evidence for
one pest over another.

The level of predisposition of a stand will determine how strongly other
factorsinfer an agent. For example, the presence of sandy soil and jack pine
(predisposing conditions) in a stand located in a high frequency county for
root tip weevil isastronger diagnostic statement than if sandy soil and jack
pine are not present.

After theinitial set of rules was constructed, experts were asked to assign
confidence values to each rule to indicate how strongly they felt the
premises imply the conclusion. Each rule was considered independently,
and the weight assigned was dependent only on that rule’'s antecedent con-
ditions. Rules that the experts did not consider important were revised or
removed. Some new rules were also added at this time. Rules with identical
premises are not independent, so the confidence values assigned to these
rules must not total greater than one (Shortliffe and Buchanan 1975).

In addition to the pest-inference rules, it was necessary to construct spe-
cid rules for implementing the diagnostic strategy, and rules for logic and
completeness. Given certain conditions, the strategy rules select specific
pests to be investigated, eliminate pests under consideration, and change
the order in which pests are investigated. Logic and completeness rules
were added to minimize questioning and supplement information omitted by
the user. For example, the antecedent conditions in the following rule are
asked in amost every session, so they represent information that is usually
known to the system. From this, the system can deduce that “the affected
trees are dead” without expecting or requiring the user to specifically state
this fact:

II:the condition of the shoots is dead,

AND the condition of the buds is dead,

AND the type of needle injury is discoloration,

AND the foliage affected is both old and new,

AND the distribution of needle damage is throughout the crown,
THEN—

the affected trees are dead.

Some types of facts have a number of values, several of which may be true
simultaneously. Instructions to the user indicate that all applicable values of
a fact should be specified when requested. However, users do not always
follow instructions, so rules were added to ensure that information obtained
by the system is as complete as possible. For example,
IF—

the type of needle injury is death,
THEN—

the type of needle injury is discoloration.

Because of the large size of the PREDICT knowledge base (over 700 rules
for the INSIGHT2+ version), it was necessary to impose a structure for
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organizing the rules and facilitating comprehension. The rules are grouped
into blocks (Figure 3) according to their function, i.e., strategy rules, pest-
inference rules for each pest, and logic and completeness rules. Each of the
pest-inference rule blocks are further structured by subblocks for elimina-
tion rules, certainty rules, and evidence-accumulation rules. Within each
elimination subblock, rules with very basic antecedent conditions appear
and are evauated first; more specific conditions of latter rules may not need
to be asked. The conditions within each rule are ordered from basic facts to
more specific facts, so the specific facts are investigated only if the pre-
ceding basic conditions are true. For example, most pest-inference rules

STRATEGY RULES

! ! '

PEST 1 PEST 2 PEST 28
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Elimination Elimination Elimination
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Ficure 3. Structure of the PREDICT knowledge base. Arrows indicate the general order in
which rules are evaluated. Strategy rules identify potential pests for further investigation,
eliminate pests, and control the order in which pests are investigated. Pest-inference rules
include elimination rules which compile disfavoring evidence, certainty rules which assign a
confidence value of one for a pest, and evidence-accumulation rules which compile favoring
evidence. Logic and completeness rules deduce facts omitted by the user and minimize the
need for questioning.
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have stand location (a condition which is always known) as the first ante-
cedent condition. If it does not apply, then the remaining conditions are not
checked. Again, this was done to minimize questioning.

REFINEMENT

Actual test cases provide redistic examples of problems and provide a basis
for refining the knowledge base and evaluating the completed expert
system. Case records of pest problems in red pine were obtained from the
Wisconsin Department of Natural Resources, Nekoosa Papers, Inc., and
the USFS Northeastern Area State and Private Forestry. Twenty of these
test cases were set aside for use in evaluating the completed expert system.
The remainder were used to refine the preliminary knowledge base.

The experts were asked to create some hypothetical cases to supplement
the actual cases, but the hypothetical cases were used only for refining the
knowledge base. They were not used for evaluating the completed system
so asto avoid the possihility of biased results.

Weiss and Kulikowski (1984, pp. 151-155) describe an approach for re-
fining rule-based inference systems using test cases for which a single, cor-
rect answer can be identified. Under this approach, a number of test cases
are evaluated by the expert system, and the number of correct evaluations
and false positives (conclusion reached, but incorrect) are tabulated for each
of the possible conclusions. If a conclusion receives a low percentage of
correct evaluations, the rules inferring this conclusion are generalized. Gen-
eralization is accomplished by removing some conditions from the IF part of
arule and/or increasing the confidence value assigned by the rule. If a con-
clusion receives a large number of false positives, rules are specialized. Spe-
cidization is accomplished by adding conditions and/or decreasing confi-
dence values.

It was necessary to modify this approach for use with the PREDICT
knowledge base, because pest diagnosis problems do not aways have a
single, correct answer. Given a particular problem, a single answer, multiple
answers, or no answer may be appropriate. Hence, it is not always easy to
distinguish correct evaluations and fal se positives.

The modified approach used to refine PREDICT is based on the classifi-
cation model of pest diagnosis, discussed earlier in this paper. According to
this model, as the diagnostic value of a damage report decreases, the
number of pests that must be considered potentially responsible increases.
With this in mind, several categories of final confidence scores for pests
were defined: (1) 1.00 corresponds to absolute certainty, (2) 0.75 —99 corre-
sponds to very probable, (3) 0.50-.74 corresponds to possible, (4) 0.20-.49
corresponds to slightly possible. The following procedure was then em-
ployed for each of the 28 pests:

1. Run a test case that is highly diagnostic for the current pest. If the pest receives

a confidence score of 1.00, or nearly so, go to Step 2; else, generdize the rules

for this pest and repeat Step 1.

2.  Reduce, dightly, the diagnostic value of the information provided by this test
case, and run the case again.

a. If the current pest receives the highest score (of all pests listed by PRE-
DICT), go to Step 3; else, proceed to 2b.

b. If all of the other pests are listed for good, diagnostic reasons, generalize
rules for the current pest, specialize rules for pests that received a higher
value, run the case again, and return to 2a; else, proceed to 2c.

c. Perform the necessary specidizations for each pest that should not have ap-
peared in the list, run the case again, and return to 2a

3. Further reduce the diagnostic value of the information provided, so that the
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current pest receives a score in the next lower category (very probable, possible,
or dlightly possible). If other pests have substantially higher scores than the cur-
rent pest, speciaize rules for those pests and run the case again.

4. Repeat Step 3 for the remaining probability y categories.

5. Repeat Steps 1-4 using different test cases.

The reasoning behind this procedure is quite simple. At the outset, with
highly diagnostic information for a particular pest, PREDICT is operating
correctly if that pest receives a score of approximately 1.00. As the diag-
nostic information is reduced, other pests should also be listed as possible
agents by PREDICT. However, none of the other pests should have a score
much greater than the pest actually causing the damage. Diagnostic infor-
mation is being reduced for the true pest, but no information is being added
for other pests.

In order to implement this refinement procedure, it was necessary to pro-
vide some means of assessing the diagnostic value of information in Steps 2
and 3. Aslists of diagnostic factors for each pest were identified during the
early stages of knowledge acquisition, some measures of diagnostic impor-
tance were also specified by the experts. These measures provided a rough
approximation of diagnostic value.

Refinement using this method of decreasing diagnostic value has some
distinct advantages. Groups of pests with similar effects are identified early
(Figure 4a), so the refinement effort can quickly focus on discriminating
between pests within each group (Figure 4b). This within-group discrimina-
tion progresses with each iteration of the procedure. As other pests within a
particular pest’s group undergo refinement, overgeneralizations and over-
specialization tend to be corrected. The procedure was found to be quite
robust.

TESTING AND EVALUATION

After refinement of the knowledge base, an experiment was designed to
compare the performance of the PREDICT expert system with that of rec-
ognized experts and field foresters. Although both versions of PREDICT
use essentially the same knowledge base, there are some differences in
operation that could affect performance. Therefore, both versions, PRE-
DICT/EXSYS and PREDICT/INSIGHT2+, were tested.

Five human subjects were selected for the comparison, a forest patholo-
gist, two forest entomologists, and two foresters. All of the subjects have
work experience with both insect and disease problems. The two foresters
attended training sessions in forest pest diagnosis, given by the Wisconsin
Department of Natural Resources, but they do not have advanced training
in entomology or pathology. None of the subjects was involved in any way
with the development of PREDICT.

The 20 test cases selected for system evaluation ranged from easy to very
difficult to diagnose. Also, the cases were selected to include many of the
more common and economically important pests. None of the cases had
been used during the refinement phase of the project. Each of the five
human subjects was shown only the written damage report for each case,
the same information that was input to the two versions of PREDICT. The
subjects were instructed to work alone (consultations with other people
were prohibited), assess each case with the aid of any reference materials
they normally use, and identify all pests that could possibly be causing the
stand damage. They were also asked to assign a humerical value (20-100%)
to each pest indicating their confidence in that pest.

The diagnoses in this experiment could not be evaluated on the basis of a
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single, correct answer. Also, it is rare to find an individual skilled in both
insect and disease diagnosis. So two evaluation teams, consisting of one
entomologist and one pathologist each, were chosen to evaluate the diag-
noses of the five human subjects and the two versions of PREDICT. None
of the members of the evaluation teams was involved with the development
of PREDICT.

The two evaluation teams worked independently and arrived at diagnoses
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for each of the test cases. Each team was then shown the diagnoses from the
human subjects and the two versions of PREDICT, but the diagnoses were
scrambled so the evaluation teams did not know their sources. Also, there
was no way the teams could determine if a diagnosis came from one of the
human subjects or one of the versions of PREDICT.

Each evaluation team was asked to provide a comprehensive score, on a
scale from zero (worst) to ten (best), for each diagnosis (noninteger values
were permitted, but rarely used). This score is a subjective rating of the
complete diagnosis, including an assessment of the appropriateness of the
agents listed and their associated confidence values. Also, each evaluation
team determined, for each diagnosis, if the assessment of the single most
likely cause of stand damage was in agreement with that of the evaluation
team.

RESULTS AND DISCUSSION

The results of the evaluation are summarized in Table 3. Disagreement be-
tween PREDICT and the evaluation teams, as to the most likely cause of
stand damage, occurred in 6 of the 20 test cases; and in 4 of these cases the
evaluation teams disagreed with each other. Most notably, both versions of
PREDICT failed to diagnose Armillaria root rot and produced false posi-
tives for root collar weevil and bark beetles. Evaluation Team 2 disagreed
with several of PREDICT's sawfly diagnoses, but Team 1 did not. These
particular test cases have since been analyzed by another entomologist, who
concluded that valid diagnoses were made by PREDICT in all but one in-
stance.

Chi-square tests were performed to identify significant differences be-
tween the numbers of diagnoses in agreement. The results are presented in
Table 4. The differences between the versions of PREDICT and the experts
are not significant, but PREDICT/EXSY S performed significant y better
than both foresters, and PREDICT/INSIGHT2+ performed significantly
better than Forester 2. There is no significant difference between the two
versions of PREDICT.

With the exception of Team 2's evaluation of PREDICT/INSIGHT2+,
the standard deviations of the comprehensive scores (Table 3) are lower for
the versions of PREDICT than for any of the human subjects, and in many
instances they are significantly lower. This suggests that PREDICT per-
forms at a more consistent level than the human subjects. Consistency was
considered a desirable attribute during the construction of PREDICT and is
one of the reasons for listing several potential pests when a single pest
cannot be diagnosed with certainty.

Differences between mean comprehensive scores for each pair of subjects
are presented in Table 5. No significant differences were found between the
versions of PREDICT and the three experts. Both versions of PREDICT
performed significantly better than Forester 2, but Forester 1's performance
is not significant y different.

It is interesting to note that the mean difference in comprehensive scores
between the two versions of PREDICT, athough small (0.50), is statistically
significant. The two versions of PREDICT are ailmost identical in their as-
sessments of the single most likely cause of damage. However, PREDICT/
INSIGHT2+ listed more potential pests (an average of 2.9 per case), and
the evaluation teams tended to assign lower ratings for producing longer
lists. While this seems valid from the view of experienced pest specialists,
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subsequent discussions with Wisconsin DNR pest management personnel’
indicated that, in field applications, foresters would benefit more from the
longer lists of potential agents. The two versions of PREDICT differ in their
threshold values for eliminating pests from consideration. PREDICT/IN-
SIGHT2+ is more conservative, and this results in longer lists. The elimi-
nation threshold can easily be changed to conform to the average list size of
the human experts (1.7 pests per case).

Aside from differences in list size, the two versions of PREDICT pro-
duced almost identical diagnoses. The main difference in performance was
found to be the amount of supplemental information available to users. IN-
SIGHT2+ provides more extensive facilities for explaining how a particul ar
diagnosis was deduced or why some item of information is being requested.
Also, facts provided to the INSIGHT2+ version can be easily changed at
any time during a diagnostic session. These differences in performance were
not evaluated in the authors’ experimental design (only the final diagnoses
were evaluated), but the y are important considerations for developers and
users of expert systems. For example, the authors found that it is much
easier to analyze and refine the rules in PREDICT’ s knowledge base using
the explanation facilities of INSIGHT2+.

A number of additional comparisons can be made from the perspective of
system development; but, because of the rapid turnover of software re-
leases, some of these comments may no longer be valid for the current ver-
sions of the two shells. The Production Rule Language (PRL) of IN-
SIGHT2+ represents a rich programming environment with a relatively
easy means for encoding knowledge bases. Because it is a very high level
language, compilation time can be quite long for large knowledge bases. The
PRL permits separation of a knowledge base into several different files, but
there is no provision for separate compilation and subsequent linking; the
entire knowledge base must be compiled each time changes are made.

EXSY S employs an interactive editor for knowledge base creation and
execution, so editing and compiling are combined in a single step. Each rule
is interpreted as it is entered or modified. This allows the knowledge base to
be executed immediately, and the effects of a new rule can be observed
amost instantly.

More detailed comparisons of the two shells are given by Schmoldt
(19874, 1988). It is worth noting that many of the new development tools
now available include multiple knowledge representation schemes (Harmon
et al. 1988). For larger and more complex applications, this additional flexi-
bility is essential.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

Through use of the expert system approach, the authors were able to cap-
ture the knowledge and experience of a few human experts in the field of
pest diagnosis of red pine. The system was designed to operate with the
same kinds of information typically recorded by field foresters on pest
damage reports. Hence, it can be used by foresters with no advanced
training in forest pathology or entomology.

Test results indicate that the PREDICT expert system diagnoses pest
damage as well as recognized experts with extensive experience, given the
same information about stand damage. Further, PREDICT performed signif-
icantly better than the two field foresters, even though they both have some

*Personal communications with David H. Hall and Allen J. Prey.
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training and experience in forest pest diagnosis. It can be concluded, then,
that PREDICT is able to improve the diagnoses of field foresters to a level
comparable with recognized experts. Test results also indicate that PRE-
DICT isvery consistent and should prove reliable over awide range of pest
damage cases.

PREDICT, like all expert systems, should continue to undergo testing and
refinement. Ease of use has already been enhanced by incorporating on-line
definitions of most of the terms used in describing pest damage. Eventualy,
a complete description of each pest will be included. Other, less frequent
types of damage (e.g., frost and drought), will also be added. Plans are cur-
rently underway to add a knowledge base for treatment recommendations.
This component would take the output from the diagnostic system and then
incorporate stand management objectives and economic considerations to
produce one or more treatment prescriptions. With continuing advances in
computer hardware and software, graphic displays of many of the
symptoms could be presented during a diagnostic session. Enhancements
like these would increase the educational value of the system as well.

Successful development of the PREDICT expert system suggests that
similar systems can and should be developed for other tree species and
other regions. An entire library of expert systems for forest pest diagnosis
could be created. However, developers will find, as the authors did, that
knowledge acquisition is the most important, as well as the most difficult
and time-consuming, aspect of expert system development. New techniques
must be found to make this process more efficient. Future efforts might
explore the use of inductive learning systems. These have been used exten-
sively in agricultural expert system development, where large numbers of
test cases are available. An induction system creates discriminant rules on
the basis of alarge repertoire of examples. A preliminary set of rules con-
structed in this manner can serve as a good starting point for further revi-
sions and refinement. In applications where test cases are abundant, a com-
bination of inductive and direct knowledge acquisition could be a very ef-
fective approach.
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